Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Nat Commun ; 14(1): 2366, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2305876

RESUMEN

The Papain-like protease (PLpro) is a domain of a multi-functional, non-structural protein 3 of coronaviruses. PLpro cleaves viral polyproteins and posttranslational conjugates with poly-ubiquitin and protective ISG15, composed of two ubiquitin-like (UBL) domains. Across coronaviruses, PLpro showed divergent selectivity for recognition and cleavage of posttranslational conjugates despite sequence conservation. We show that SARS-CoV-2 PLpro binds human ISG15 and K48-linked di-ubiquitin (K48-Ub2) with nanomolar affinity and detect alternate weaker-binding modes. Crystal structures of untethered PLpro complexes with ISG15 and K48-Ub2 combined with solution NMR and cross-linking mass spectrometry revealed how the two domains of ISG15 or K48-Ub2 are differently utilized in interactions with PLpro. Analysis of protein interface energetics predicted differential binding stabilities of the two UBL/Ub domains that were validated experimentally. We emphasize how substrate recognition can be tuned to cleave specifically ISG15 or K48-Ub2 modifications while retaining capacity to cleave mono-Ub conjugates. These results highlight alternative druggable surfaces that would inhibit PLpro function.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ubiquitina , Humanos , Citocinas/metabolismo , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
2.
Proteins ; 89(12): 1987-1996, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1449944

RESUMEN

Critical Assessment of Structure Prediction (CASP) is an organization aimed at advancing the state of the art in computing protein structure from sequence. In the spring of 2020, CASP launched a community project to compute the structures of the most structurally challenging proteins coded for in the SARS-CoV-2 genome. Forty-seven research groups submitted over 3000 three-dimensional models and 700 sets of accuracy estimates on 10 proteins. The resulting models were released to the public. CASP community members also worked together to provide estimates of local and global accuracy and identify structure-based domain boundaries for some proteins. Subsequently, two of these structures (ORF3a and ORF8) have been solved experimentally, allowing assessment of both model quality and the accuracy estimates. Models from the AlphaFold2 group were found to have good agreement with the experimental structures, with main chain GDT_TS accuracy scores ranging from 63 (a correct topology) to 87 (competitive with experiment).


Asunto(s)
SARS-CoV-2/química , Proteínas Virales/química , COVID-19/virología , Genoma Viral , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Viroporinas/química , Proteínas Viroporinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA